Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 12(30): 6430-41, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27418417

RESUMO

A constitutive model for the anisotropic magnetoresistivity in structured elastomer composites (SECs) is proposed. The SECs considered here are oriented pseudo-chains of conductive-magnetic inorganic materials inside an elastomer organic matrix. The pseudo-chains are formed by fillers which are simultaneously conductive and magnetic dispersed in the polymer before curing or solvent evaporation. The SEC is then prepared in the presence of a uniform magnetic field, referred to as Hcuring. This procedure generates the pseudo-chains, which are preferentially aligned in the direction of Hcuring. Electrical conduction is present in that direction only. The constitutive model for the magnetoresistance considers the magnetic pressure, Pmag, induced on the pseudo-chains by an external magnetic field, H, applied in the direction of the pseudo-chains. The relative changes in conductivity as a function of H are calculated by evaluating the relative increase of the electron tunnelling probability with Pmag, a magneto-elastic coupling which produces an increase of conductivity with magnetization. The model is used to adjust experimental results of magnetoresistance in a specific SEC where the polymer is polydimethylsiloxane, PDMS, and fillers are microparticles of magnetite-silver (referred to as Fe3O4[Ag]). Simulations of the expected response for other materials in both superparamagnetic and blocked magnetic states are presented, showing the influence of the Young's modulus of the matrix and filler's saturation magnetization.

2.
Soft Matter ; 12(2): 422-31, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26477664

RESUMO

Structured elastomeric composites (SECs) with electrically conductive fillers display anisotropic piezoresistivity. The fillers do not form string-of-particle structures but pseudo-chains formed by grouping micro-sized clusters containing nanomagnetic particles surrounded by noble metals (e.g. silver, Ag). The pseudo-chains are formed when curing or preparing the composite in the presence of a uniform magnetic field, thus pseudo-chains are aligned in the direction of the field. The electrical conduction through pseudo-chains is analyzed and a constitutive model for the anisotropic reversible piezoresistivity in SECs is proposed. Several effects and characteristics, such as electron tunnelling, conduction inside the pseudo-chains, and chain-contact resistivity, are included in the model. Experimental results of electrical resistance, R, as a function of the normal stress applied in the direction of the pseudo-chains, P, are very well fitted by the model in the case of Fe3O4[Ag] microparticles magnetically aligned while curing in polydimethylsiloxane, PDMS. The cross sensitivity of different parameters (like the potential barrier and the effective distance for electron tunnelling) is evaluated. The model predicts the presence of several gaps for electron tunnelling inside the pseudo-chains. Estimates of those parameters for the mentioned experimental system under strains up to 20% are presented. Simulations of the expected response for other systems are performed showing the influence of Young's modulus and other parameters on the predicted piezoresistivity.

3.
Bioprocess Biosyst Eng ; 35(5): 835-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22212349

RESUMO

A specially designed electronic nose was coupled to an air-lift bioreactor in order to perform on-line monitoring of released vapors. The sensor array was placed at the top of the bioreactor sensing the headspace in equilibrium with the evolving liquor at any time without the need of aspiration and pumping of gases into a separated sensor chamber. The device was applied to follow the off-gas of a bioreactor with Acidithiobacillus thiooxidans grown on beds of elemental sulfur under aerobic conditions. Evolution was monitored by acid titration, pH and optical density measurements. The electronic nose was capable to differentiate each day of reactor evolution since inoculation within periods marked off culture medium replacements using multivariate data analysis. Excellent discrimination was obtained indicating the potentiality for on-line monitoring in non-perturbed bioreactors. The prospects for electronic nose/bioreactor merging are valuable for whatever the bacterial strain or consortium used in terms of scent markers to monitor biochemical processes.


Assuntos
Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Reatores Biológicos , Gases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...